Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model
نویسنده
چکیده
An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications. Keywords—Adaptive; Spatial; Mixture model; Segmentation ; Color.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملSpatial Finite Non-gaussian Mixture for Color Image Segmentation
Spatial Finite Non-Gaussian Mixtures for Color Image Segmentation Ali Sefidpour Finite mixture models are one of the most widely and commonly used probabilistic techniques for image segmentation. Although the most well known and commonly used distribution when considering mixture models is the Gaussian, it is certainly not the best approximation for image segmentation and other related image pr...
متن کاملAdaptive Gaussian Mixture Model for Skin Color Segmentation
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimati...
متن کاملA New Modified Gaussian Mixture Model for Color-Texture Segmentation
Problem statement: This study presents a new, simple and efficient modified Gaussian mixture model based clustering algorithm for color-texture segmentation. The proposed mixture model introduces a new component density function which incorporates spatial information and the weighting factor for neighborhood effect is fully adaptive to the image content. Approach: It enhances the smoothness tow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009